
Project Proposal:
Parallel Union-find

Group members: Zhaowei Zhang, Eric Zhu

Project Website: https://pentene.github.io/parallel-union-find/

Summary
In this project, we will explore different lock techniques of the Union-find Data Struc-

ture, specifically coarse-grained lock, fine-grained lock, and lock-free along with Union-Find
specific optimizations (path compression, union by rank). We aim to benchmark these imple-
mentations rigorously, analyzing their performance characteristics and scalability compared
to the serialized version. Finally, we plan to test our implementation in different graph
algorithms to further analyze its performance in real-world applications.

Background
The Union-Find data structure is essential in applications that require efficient detection

of connectivity, such as clustering, graph connectivity, and image segmentation. The two
fundamental operations are find and union. Parallelizing these operations requires careful
handling of concurrent access to shared memory structures, along with optimizations such as
path compression and union by rank. Below is a high-level pseudocode with optimizations:

Algorithm 1 Union-Find (Disjoint Set) Implementation

1: function Find(x)
2: if parent[x] ̸= x then
3: parent[x]← Find(parent[x]) ▷ Path compression
4: end if
5: return parent[x]
6: end function
7: function Union(a, b)
8: rootA← Find(a)
9: rootB ← Find(b)
10: if rootA ̸= rootB then
11: if rank[rootA] < rank[rootB] then
12: parent[rootA]← rootB
13: else
14: parent[rootB]← rootA
15: if rank[rootA] = rank[rootB] then
16: rank[rootA]← rank[rootA] + 1
17: end if
18: end if
19: end if
20: end function

Parallelism combined with these optimizations significantly enhances performance for
large-scale sets. Efficient synchronization must be paired with effective optimizations to
achieve peak performance.

1



Goals and Deliverables
Here are our planned goals:

• Implement Multiple parallel implementations on CPU with OpenMP using:

– Coarse-grained locking

– Fine-grained locking

– Lock-free synchronization

• Implementation of Union-Find optimizations (path compression, union by rank) along
with synchronization methods

• Measure and compare throughput, latency, and scalability of each synchronization and
optimization method on CPU under diverse workloads, including:

– Varying graph sizes and densities (sparse, dense)

– Different access patterns (find-heavy, union-heavy workloads)

– Real-world datasets

Here are our aspirational goals:

• Investigate dynamic selection of locking vs. lock-free approaches depending on work-
load size or distribution.

• Demonstrate parallel Union-Find performance improvements in practical applications
such as image segmentation or network analysis.

Here are our fallback goals:

• Focus on fewer synchronization methods and optimizations with a thorough perfor-
mance analysis.

• Identify the potential bottlenecks in the parallel algorithms.

Challenges
Parallelizing and optimizing Union-Find using OpenMP on CPUs presents several signif-

icant challenges, driven primarily by workload characteristics, synchronization complexity,
and architectural constraints.

• Workload Characteristics: While many find and union operations can run concurrently,
conflicts can arise when multiple threads simultaneously update shared structures (par-
ent and rank arrays). Proper synchronization methods must mitigate these conflicts
without severely limiting concurrency. And this is one important field we will be testing
on.

• Memory access characteristics: Union-Find operations, especially with path compres-
sion, lead to irregular memory access patterns. These irregular accesses result in scat-
tered memory reads and writes, limiting cache performance and reducing locality.

2



• Communication-to-Computation ratio: Despite the simplicity of union-find computa-
tions, synchronization overhead can dominate performance, particularly with frequent
concurrent updates.

• Divergent execution: The pointer-chasing nature of Union-Find, particularly path com-
pression, inherently generates unpredictable branching and memory access, complicat-
ing optimization and efficient parallel execution on CPUs.

By addressing these challenges specifically within the context of OpenMP, we aim to
deepen our understanding of parallel programming principles, synchronization mechanisms,
and efficient optimization strategies tailored for shared-memory multicore systems.

Resources
Implementation and benchmarking will be performed primarily on GHC lab machines

and Pittsburgh Supercomputing Center (PSC) resources. PSC machines offer robust CPU
capabilities for detailed performance profiling and large-scale experimentation.

Here is a list of references:

• Fedorov, A., Hashemi, D., Nadiradze, G., and Alistarh, D. (2023). Provably-efficient
and internally-deterministic parallel union-find. In Proceedings of the 35th ACM Sym-
posium on Parallelism in Algorithms and Architectures (SPAA ’23), Orlando, FL, USA,
June 17–19, 2023. Association for Computing Machinery.

https://doi.org/10.1145/3558481.3591082

• Anderson, R. J., and Woll, H. (1991). Wait-free parallel algorithms for the union–find
problem. In Proceedings of the 23rd Annual ACM Symposium on Theory of Computing
(STOC ’91), pp. 370–380. Association for Computing Machinery.

https://doi.org/10.1145/103418.103458

Platform Choice
The GHC lab machines and PSC machines provide multi-core CPUs resources suitable

for our parallel implementations. GHC machines will facilitate development and initial
testing, while the powerful CPU systems at PSC will enable detailed performance profiling
and large-scale experimentation.

Schedule (Tentative)

3



Week Planned Activities
3.26 - 4.2 Update Proposal

4.2 - 4.9
Implement serial Union-Find and coarse-grained locks.
Design and generate different workloads.

4.9 - 4.15
Implement fine-grained locks and lock-free Union-Find.
Evaluate CPU scalability under diverse workloads.

4.15 - 4.23
Finish the implementations.
Test on real-world workloads and analyze performance.

4.23 - 4.28
Finalize benchmarking across all implementations.
Analyze trade-offs of locking strategies
across workloads. Generate figures for performance comparisons.

4.29 Poster session.

4


